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1. Introduction

Noncommutative (NC) gauge theory is realized [1 – 3] by considering a NC background in

matrix models [4, 5]. It offers a promising possibility that it contains gravity as a quantum

correction through the UV/IR mixing effect [6]. In string theory, some perturbative vacua

are well-known and the relation between them are clarified, but there is a vast amount of

moduli space to be fixed, and we have no sufficient information to predict which is the

nonperturbative vacuum. Landscape is one of the major fields in the recent development

in string theory [7]. On the other hand, it is still a very fascinating idea that our uni-

verse is uniquely selected through the nonperturbative effect of string theory. To find this

mechanism, it is necessary to study quantum gravity from string theory point of view.

Quantum gravity itself is very difficult to study, but in string theory, there is a duality

between open string and closed string, therefore, we can analyze quantum gravity by using

open string modes. AdS/CFT correspondence is a well-established correspondence [8].

But in an ordinary gauge theory, it might not be easy for us to probe quantum gravity,

since we do not keep higher tower of open string degrees of freedom. On the other hand,

NC gauge theories may include such open string modes since they are essentially matrix

models. In this sense, new effects of quantum gravity might be seen in the quantum

corrections of NC gauge theory. Then, what kind of phenomena is included in this effects?

One of the possibility which we discuss in this paper is that the 4 dimensional quantum

gravity is realized in 4 dimensional NC gauge theory. Our scenario is similar to the brane
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world scenario [9], which explains the localization of gravity on D-brane. We suggest that

NC gauge theories provide a localization of gravity on D-branes. Our goal is to derive

1/(momentum)2 dependence of massless graviton propagators in NC gauge theories.

In section 2.1, we briefly review the open Wilson lines in NC gauge theories on S2×S2.

By considering the regularized space, we can consider the large but finite N system which

serves us as a gauge invariant regularization. In section 2.2, two point function of open

Wilson lines which couple to the massless graviton mode is calculated. The tensor structure

of Wilson line correlators (WLC), which depends on the isometry of S2×S2, is constructed

in section 2.3. In section 3.1, we show that the essential part of the correlator, which

we explain there in detail, does not depend on our choice of G/H. In section 3.2, we

calculate two point function of WLC on another homogeneous space, CP 2, which has

higher symmetry than S2×S2. In section 3.3, we generalize our result to other dimensions,

for example, S2 × S2 × S2. We conclude in section 4 with discussions.

2. Wilson line correlators in noncommutative gauge theory

Noncommutative (NC) gauge theories on compact homogeneous spaces can be constructed

from IIB matrix model. They have been investigated in [10 – 15]. By considering the

compact homogeneous space, we can deal with a large but finite N system, which enables

us to investigate non-perturbative questions. It thus serves us as a nonperturbative and

gauge invariant regularization of NC gauge theory. The bosonic part of the action of IIB

matrix model is written as

S = −1

4
tr[Aµ, Aν ]2 , (2.1)

where Aµ are N × N hermitean matrices and µ and ν run over 0, · · · , 9. The equation of

motion is obtained as

[Aµ, [Aµ, Aν ]] = 0 . (2.2)

NC gauge theory is obtained by expanding matrices around the NC backgrounds. We

will denote the NC gauge field aµ around the background pµ as

Aµ = fα(pµ + aµ) , (2.3)

where fα is a scale factor. When we consider the action (2.1) with a Myers term [16] as

i

3
fµνρAµ[Aν , Aρ] , (2.4)

we can identify a scale factor f in (2.3) with a coefficient f in (2.4). In this sense, the index

α labels the representation of a fuzzy homogeneous space [17]. Alternatively such a space

may be realized as a quantum solution [12]. Although supersymmetry is softly broken in

either case, the leading behavior of the correlators is constrained by SUSY.
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2.1 Feynman rule of noncommutative gauge theory on S2 × S2

Let us briefly describe the Feynman rule of NC gauge theory on S2 with U(1) gauge group.

We will generalize the rule to S2 ×S2 background with U(n) gauge group later. We follow

the notation in [10].

We expand matrices in terms of matrix spherical harmonics as

Aµ = fS2



pµ +
∑

jm

aµ
jmYjm



 , (2.5)

where the representation Yjm is adopted as

(Yjm)ss′ = (−1)l−s

(

l j l

−s m s′

)

√

2j + 1. (2.6)

pµ can be identified with the angular momentum operator in the spin l representation. The

normalization is defined as

Tr Yj1m1
Yj2m2

= (−1)m1δj1,j2δm1,−m2
. (2.7)

The cubic vertex of matrix spherical harmonics is written as

µ´
¶³Yj2

Yj1

Yj3 = Tr[Yj1m1
Yj2m2

Yj3m3
] = (−1)2l

√

(2j1 + 1)(2j2 + 1)(2j3 + 1)

×
(

j1 j2 j3

m1 m2 m3

){

j1 j2 j3

l l l

}

, (2.8)

where we adopt the notation of (3j) and {6j} symbols in [18]. The propagators of the NC

gauge field aµ
jm are read from the action as

〈 aµ
j1m1

aν
j2m2

〉 =
1

f4
S2

(−1)m1

j1(j1 + 1)
δµνδj1j2δm1−m2

. (2.9)

Next, let us introduce Wilson lines in NC gauge theory [19] 1 on S2. They are con-

structed by the trace of polynomial of matrices as

y
α1,α2,··· ,αj

jm TrAα1
Aα2

· · ·Aαj
Ai1Ai2 · · ·Aik . (2.10)

α = 7, 8, 9 denote the dimensions where S2 is embedded. y
α1,α2,··· ,αj

jm denotes a totally

symmetric traceless tensor which corresponds to the spin j representation of SU(2). The

background pµ consists of angular momentum operators in spin l representation. In our

expansion of Aµ around the background pµ, the leading term of the Wilson line is written as

f j+k
S2 y

α1,α2,··· ,αj

jm Tr pα1
pα2

· · · pαj
O1 · · · Ok , (2.11)

where O is a field around the background pµ. We define Yjm as

Yjm ≡ y
α1,α2,··· ,αj

jm pα1
pα2

· · · pαj
. (2.12)

1The large momentum limit of Wilson line correlators is discussed in [20, 21].
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We will focus on the highest weight states of SU(2), therefore, we also define Yj as

yj,j Tr(p+)jO1 · · · Ok = TrYjO1 · · · Ok , (2.13)

where p+ ≡ p7 + ip8.

Using these Feynman rules, we find that there are planar and non-planar contribution

in the two point function of TrYjO1O2 at the leading order,

1

2l + 1
〈TrYjO1O2 TrO†

2O
†
1Y

†
j 〉

= µ´
¶³

µ´
¶³O1

O2

Y = 〈j| 1

P 2
1 P 2

2

|j〉p ,

1

2l + 1
〈TrYjO1O2 TrO†

1O
†
2Y

†
j 〉

= µ´
¶³

µ´
¶³O1

O2

Y = 〈j| 1

P 2
1 P 2

2

|j〉np , (2.14)

where

Pµ
i Yji′mi′

≡ [pµ,Yji′mi′
]δii′ . (2.15)

The planar and nonplanar part of the correlation function on S2 is given by

〈j|X|j〉p =
1

f8
S2(2l + 1)

∑

j2,j3,m2,m3

Ψ∗
123XΨ123 ,

〈j|X|j〉np =
1

f8
S2(2l + 1)

∑

j2,j3,m2,m3

Ψ∗
132XΨ123 ,

where Ψ123 ≡ TrYj3m3
Yj2m2

Yj. (2.16)

Now, let us formulate the Wilson line correlators on S2 × S2 with U(n) gauge group.

The construction is the simple extension of the correlators on S2. We expand matrices in

terms of the tensor product of matrix spherical harmonics as

Aµ = fS2×S2(pµ +
∑

jmpq

aµ
jmpqYjm ⊗ Ypq) , (2.17)

where

pµ = jµ ⊗ 1 (µ = 4, 5, 6) ,

pµ = 1 ⊗ j̃µ (µ = 7, 8, 9) . (2.18)

In this section, we consider only the S2 × S2 manifold, therefore, from now on, we denote

fS2×S2 as f . The summations over j and p run up to j = 2l and p = 2l respectively. We

consider NC gauge theory with U(n) gauge group, so N = n(2l +1)2. The propagators are

written as

〈 aµ
j1m1p1q1

aν
j2m2p2q2

〉 =
1

f4

(−1)m1+q1

j1(j1 + 1) + p1(p1 + 1)
δµνδj1j2δp1p2

δm1−m2
δq1−q2

. (2.19)
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We define the normalization as

Tr Yj1m1p1q1
Yj2m2p2q2

= n(−1)m1δj1j2δm1−m2
δp1p2

δq1−q2
. (2.20)

The planar and nonplanar part of the correlation function on S2 × S2 are given by

〈j, p|X|j, p〉p =
n3

f8N

∑

j2,j3,m2,m3

∑

p2,p3,q2,q3

Ψ∗
123XΨ123 ,

〈j, p|X|j, p〉np =
n3

f8N

∑

j2,j3,m2,m3

∑

p2,p3,q2,q3

Ψ∗
132XΨ123 ,

where Ψ123 ≡ TrYj3m3p3q3
Yj2m2p2q2

Yj,p . (2.21)

The leading terms of the Wilson lines in the highest weight state representation of SU(2)×
SU(2) are written as

yj,jyp,p Tr(p+)j(p̃+)pO1 · · · Ok = TrYj,pO1 · · · Ok . (2.22)

Finally, we define λ ≡ n2

f4N , which is identified with ’t Hooft coupling.

2.2 Two point correlation function of massless graviton mode

The relation between straight Wilson line operators and fields in the massless supergravity

multiplet is clarified in [22][23]. In this section, we investigate the two point correlators of

a massless graviton mode. The vertex operators which couple to the graviton in type IIB

matrix model are written as

Str exp(ik · A)

(

[Aρ, Aµ][Aρ, Aν ] +
1

2
ψ̄Γ(ν [Aµ), ψ]

)

hνµ

+
1

2
Str exp(ik · A)ψ̄Γρβ(νψ[Aµ), Aβ ]∂ρhνµ , (2.23)

where the symbol Str implies that the ordering of the matrices is defined through the

symmetric trace. (µ, ν) implies that the Lorentz indices are symmetrized. In analogy with

this operator, we may introduce the Wilson line operator in NC gauge theory on S2×S2 as

StrYj,p(A)

(

[Aρ, Aµ][Aρ, Aν ] +
1

2
ψ̄Γ(ν [Aµ), ψ]

)

. (2.24)

The symmetric trace of the operators on compact space may be defined as

Str(p+)j(p̃+)pO1O2 ≡ 1

j
Tr

j
∑

j1=0

(p+)j1(p̃+)p1O1(p+)j−j1(p̃+)p−p1O2 ,

where p1 ∼ p

j
j1 , (2.25)

which is a natural extension of the symmetric trace in the flat noncommutative space. p1

is an integer nearest to j1p/j. Although supersymmetry is softly broken at the scale where

the manifold is curved, it will not affect the leading behavior of the correlators with respect

to the large N limit.
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The leading term of the Wilson line is written as

StrYj,p([pρ, aµ] − [pµ, aρ])([pρ, aν ] − [pν , aρ]) ≡ StrYj,pfρµfρν , (2.26)

where we define fρµ ≡ [pρ, aµ]− [pµ, aρ]. Note that there are other terms in the expansion,

for example,

StrYj,p[aρ, aµ][aρ, aν ] . (2.27)

But these terms are of higher orders with respect to the ’t Hooft coupling λ. The two point

function of the Wilson line operator which couples to graviton is written as

〈 StrYj,pfρµfρν Str f †
ρ′µ′f

†
ρ′ν′Y†

j,p 〉 . (2.28)

First, we simplify the correlators in such a way that

fρµ → f1 = [pρ, aµ], fρν → f2 = [pρ, aν ] . (2.29)

This substitution is useful to understand the essential feature of the correlators. We will

present the complete calculation of the correlators in section 2.3.

In this way, we obtain

〈 StrYj,pf1f2 Str f †
2f †

1Y
†
j,p 〉

= y2
j y

2
p〈 Str(p+)j(p̃+)pf1f2 Str f †

2f †
1(p−)j(p̃−)p 〉

=
y2

j y
2
p

j2

j
∑

j1=0

j
∑

j2=0

〈 tr(p+)j1(p̃+)p1f1(p+)j−j1(p̃+)p−p1f2

tr f †
2(p−)j−j2(p̃−)p−p2f †

1(p−)j2(p̃−)p2 〉

=
y2

j y
2
p

j2

j
∑

j1=0

j
∑

j2=0

(yj1yp1
yj2yp2

yj−j1yp−p1
yj−j2yp−p2

)−1

ÁÀ
Â¿

ÁÀ
Â¿

Y
f1Y
f2

, (2.30)

where we denote

ÁÀ
Â¿

ÁÀ
Â¿

Y
f1Y
f2

≡ 〈 trYj1,p1
f1Yj−j1,p−p1

f2 tr f †
2Y

†
j−j2,p−p2

f †
1Yj2,p2

〉 . (2.31)

Before proceeding further, let us show a property of the operator fi, which helps us to

perform the calculation:

〈f1f
†
1〉 ∼ 〈[pρ, aµ][a†ν , pρ]〉

∼
∑

jmpq

YP 2 1

P 2
(Y†)δµν ∼

∑

jmpq

Y(Y†)δµν . (2.32)

Thus, we can use the completeness condition:
∑

jmpq

(Y)ab(Y†)cd = δadδbc , (2.33)

when we sum over the internal momenta. Here a, b, c and d are indices of matrices. Note

that this property does not depend on the choice of the basis.
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Now, let us resume the calculation of (2.30). We substitute the results (2.32) and

(2.33) into (2.30) as

〈 StrYj,pf1f2 Str f †
2f †

1Y
†
j,p 〉

=
n2

j2

j
∑

j1=0

j
∑

j2=0

y2
j y

2
p

yj1yp1
yj2yp2

yj−j1yj−p1
yj−j2yp−p2

× trYj1p1
Y†

j2p2
trYj−j1,p−p1

Y†
j−j2,p−p2

=
n2

j2

j
∑

j1=0

j
∑

j2=0

y2
j y

2
p

yj1yp1
yj2yp2

yj−j1yj−p1
yj−j2yp−p2

δj1−j2,0δp1−p2,0

=
n2

j2

j
∑

j1=0

(
yjyp

yj1yp1
yj−j1yp−p1

)2

≡ n2

j2

j
∑

j1=0

B2
j1,j−j1B

2
p1,p−p1

. (2.34)

where we have introduced the separating function Bj1,j−j1 =
yj

yj1
yj−j1

.

Bj1,j−j1 depends on a homogeneous space G/H we consider. As (p+)j = (p+)j1(p+)j−j1

leads to Yj = Bj1,j−j1Yj1Yj−j1,

B−1
j1,j−j1

= trY†
jYj1Yj−j1

= (−1)2l
√

(2j + 1)(2j1 + 1)(2(j − j1) + 1)

×
(

j j1 j − j1

j −j1 −j + j1

){

j j1 j − j1

l l l

}

, (2.35)

in the case of S2 × S2. (3j) symbol is calculated as
(

j j1 j − j1

j −j1 −j + j1

)

=

√

1

2j + 1
, (2.36)

while {6j} symbol is
{

j j1 j − j1

l l l

}

∼
√

1

2l

(

j j1 j − j1

0 0 0

)

, (2.37)

when l À 1 [24]. Using the Stirling formula n! ∼
√

2πnnne−n, we obtain
(

j j1 j − j1

0 0 0

)

= (−1)j

√

(2j − 2j1)!(2j1)!

(2j + 1)!

j!

(j − j1)!j1!

∼
(

1

4πj(j − j1)j1

)1/4

. (2.38)

In this way, Bj1,j−j1 is obtained as

B2
j1,j−j1 ∼ l

√

πj

j1(j − j1)
. (2.39)

for j, j1, j − j1 À 1.
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When the momenta are equally shared: j = p = K/2, Wilson line correlator (2.30) is

found as

〈 StrYj,pf1f2 Str f †
2f †

1Y
†
j,p 〉

∼ N
nπ

K2
log K2 . (2.40)

Thus, we have obtained 1/K2 dependence except for the log K factor. When we con-

sider the correlators with j 6= p, they do not exhibit SO(4) symmetry. This undesirable

feature may be overcome if we consider the space with higher symmetry. In fact, we

will find that there are no log factor nor directional asymmetry in the CP 2 space in sec-

tion 3.2.

2.3 Ward identity for Wilson line correlators and tensor structure

In the preceding sub-section, we have found that the graviton two point function behaves as

that of a propagator of massless field (1/K2). In this sub-section, we present the complete

calculation including the fermionic contribution. We will show that the tensor structure of

the Wilson line correlators is consistent with Ward identity.

The two point function of (2.28) is written as

〈 StrYj,pfρµfρν Str f †
ρ′ν′f

†
ρ′µ′Y†

j,p 〉
= 〈 StrYj,p([pρ, aµ] − [pµ, aρ])([pρ, aν ] − [pν , aρ])

Str([p†ρ′ , a
†
ν′ ] − [p†ν′ , a

†
ρ′ ])([p

†
ρ′ , a

†
µ′ ] − [p†µ′ , a

†
ρ′ ])Y

†
j,p 〉 , (2.41)

where we focus on the leading terms of the ’t Hooft coupling λ. Two propagators in this

correlator carry almost the same angular momenta since the external angular momentum

is assumed to be very small compared to the internal angular momenta of the cut-off scale.

It is because the correlator is quartically divergent in power counting. Therefore, we do

not distinguish the two propagators and as a result, we obtain the following expression:

〈 StrYj,p([pρ, aµ] − [pµ, aρ])([pρ, aν ] − [pν , aρ])

Str([p†ρ′ , a
†
ν′ ] − [p†ν′ , a

†
ρ′ ])([p

†
ρ′ , a

†
µ′ ] − [p†µ′ , a

†
ρ′ ])Y

†
j,p 〉

=
1

K2

∑

K1,K2

∑

a,b

B2
K1,K−K1

B2
K2,K−K2

trY1YaY1′Yb

(

1

P 2

)2 (

2(d − 2)PµPµ′

P νP ν′

+P 2(2PµP νδµ′ν′ + 2Pµ′

P ν′

δµν − PµPµ′

δνν′ − P νP ν′

δµµ′ − PµP ν′

δµ′ν − Pµ′

P νδµν′)

+P 4(δµµ′δνν′ + δµν′δµ′ν)
)

trY†
bY

†
2′Y†

aY†
2 , (2.42)

where d(10) is a number of bosonic matrices. K1 and K2 specify the phase structure

of the left and right sides of the symmetric trace. Yi(i′)(i = 1, 2) are related to Yj,p as

Yj,p = BKi,K−Ki
YiYi′ .
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On S2 ×S2,
∑

a,b trY1YaY1′Yb trY†
bY

†
2′Y

†
aY†

2 = δj1−j2,0δp1−p2,0. We have evaluated the

essential part of the correlators in the preceding sub-section as

1

K2

∑

K1,K2

∑

a,b

B2
K1,K−K1

B2
K2,K−K2

trY1YaY1′Yb trY†
bY

†
2′Y†

aY†
2 =

1

K2

∑

K1

B4
K,K−K1 . (2.43)

We will focus on the tensor structure of the correlators in this sub-section.

The leading contribution of the fermionic part of the Wilson line correlators is ob-

tained as
〈

StrYj,p
1

2
ψ̄Γ(ν [pµ), ψ]

(

StrYj,p
1

2
ψ̄′Γ(ν′

[pµ′), ψ′]

)†
〉

=
1

K2

∑

K1,K2

∑

a,b

B2
K1,K−K1

B2
K2,K−K2

trY1YaY1′Yb

(

1

P 2

)2
(

−fPµPµ′

P νP ν′

+
f

8
P 2(PµPµ′

δνν′ + P νP ν′

δµµ′ + PµP ν′

δµ′ν + Pµ′

P νδµν′)

)

trY†
bY

†
2′Y†

aY†
2 , (2.44)

where f(16) counts fermionic degrees of freedom. The total amplitude is obtained as

Aµνµ′ν′

tot =
1

K2

∑

K1,K2

∑

a,b

B2
K1,K−K1

B2
K2,K−K2

trY1YaY1′Yb(
1

P 2
)2

(

(2d − 4 − f)PµPµ′

P νP ν′

− (1 − f

8
)P 2(PµPµ′

δνν′ + P νP ν′

δµµ′ + PµP ν′

δµ′ν + Pµ′

P νδµν′)

+2P 2(PµP νδµ′ν′ + Pµ′

P ν′

δµν) + P 4(δµµ′δνν′ + δµν′δµ′ν)
)

trY†
bY

†
2′Y†

aY†
2 , (2.45)

In the supersymmetric case (f = 2(d − 2)), it may be simplified further,

Aµνµ′ν′

tot =
1

K2

∑

K1,K2

∑

a,b

B2
K1,K−K1

B2
K2,K−K2

trY1YaY1′Yb

(

2

d̃
(δ̃µνδµ′ν′ + δµν δ̃µ′ν′)

+
d
4 − 3

2

d̃
(δ̃µµ′δνν′ + δ̃µν′δµ′ν + δµµ′ δ̃νν′ + δµν′ δ̃µ′ν)

+(δµµ′δνν′ + δµν′δµ′ν)
)

trY†
bY

†
2′Y†

aY†
2 , (2.46)

where we have replaced

Pµ′Pν′ → P 2

d̃
δ̃µ′ν′ . (2.47)

d̃ denotes the dimension of the isometry group G. δ̃µ′ν′ is a Kronecker delta in the d̃

dimensional subspace.
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Now, let us consider the tensor structure of graviton correlators on S2×S2 = SU(2)×
SU(2)/U(1) × U(1). The dimension of G = SU(2) × SU(2) is d̃ = 6 as they can be

embedded in the 6 dimensional space. The total amplitude is obtained from (2.46) as

Aµνµ′ν′

tot =
1

K2

∑

K1

B4
K,K−K1

(

1

3
(δ̃µνδµ′ν′ + δµν δ̃µ′ν′)

+
1

6
(δ̃µµ′δνν′ + δ̃µν′δµ′ν + δµµ′ δ̃νν′ + δµν′ δ̃µ′ν) +(δµµ′δνν′ + δµν′δµ′ν)

)

, (2.48)

where we have substituted f = 16 and d = 10. Tensor structure for the bosonic part is

discussed in the appendix.

In order to check the consistency of our calculation, we derive the following Ward

identity for the Wilson line correlators of graviton mode

Kµ ( ÁÀ
Â¿

ÁÀ
Â¿

)

= K〈 Str V †
+ν Str Vµ′ν′ 〉

=

〈

(A−)K+1
ij

(

δ

δAν

)

ji

I StrVµ′ν′

〉

−
∑

K1

〈

tr
1

4
(A−)K1ψ̄Γ−ν(A−)K−K1

∂

∂ψ̄
I StrVµ′ν′

〉

= −
〈

(A−)K+1
ij

(

δ

δAν

)

ji

Str Vµ′ν′

〉

+
∑

K1

〈

tr
1

4
(AK1

− ψ̄Γ−ν(A−)K−K1
∂

∂ψ̄
StrVµ′ν′

〉

− δ−ν

∑

K1

〈 tr(A−)K1 tr(A−)K−K1 Str Vµ′ν′ 〉 , (2.49)

where

Vµν = (A+)K
(

[Aρ, Aµ][Aρ, Aν ] +
1

2
ψ̄Γ(µ[Aν), ψ]

)

I =
1

4
Tr[Aµ, Aρ]

2 + Tr
1

2
ψ̄Γµ[Aµ, ψ]

(A±)K = (p± + a± + p̃± + ã±)K . (2.50)

These vertex operators are closely related to those we have investigated up to a normal-

ization factor of y2
j (j!)

2/(2j)! since

(p± + p̃±)2j ∼ (2j)!

(j!)2
pj
±p̃j

± . (2.51)

where j À 1 is assumed. 2

First, let us discuss the last line in (2.49). We focus on the leading term of the

expansion of ’t Hooft coupling λ. The leading term is one loop diagram. Therefore, the

first and second trace can contain no creation (annihilation) operators. Thus, this three

point function is calculated as
∑

K1

〈 tr(A−)K1 tr(A−)K−K1 Str Vµ′ν′ 〉 = 0 , (2.52)

2The two point functions are slightly different since there are no log(K) factors unlike in (2.40).
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since

tr〈 (A−)K 〉 = 0 for K 6= 0 . (2.53)

The one point function of Wilson line operators is

〈

−(A−)K+1
ij

(

δ

δAν

)

ji

StrVµ′ν′

〉

+
∑

K1

〈

tr
1

4
(A−)K1ψ̄Γ−ν(A−)K−K1

∂

∂ψ̄
Str Vµ′ν′

〉

.

(2.54)

The bosonic part is calculated as

(YK)2

〈

(A−)K+1
ij

(

δ

δAν

)

ji

Str(A+)K
[

Aρ′ , Aµ′

] [

Aρ′ , Aν′

]

〉

=
1

K

∑

K1

∑

a,b

(YK)2

tr
(

(Aρ′(A−)K+1(A+)K1f †
ρ′ν′(A+)K−K1 − Aρ′(A+)K1f †

ρ′ν′(A+)K−K1(A−)K+1)δνµ′

+ (Aρ′(A−)K+1(A+)K1f †
ρ′µ′(A+)K−K1 − Aρ′(A+)K1f †

ρ′µ′(A+)K−K1(A−)K+1)δνν′

+ ((A−)K+1Aµ′(A+)K1f †
ρ′ν′(A+)K−K1 − Aµ′(A−)K+1(A+)K1f †

ρ′ν′(A+)K−K1)δρ′ν

+ ((A−)K+1Aν′(A+)K1f †
ρ′µ′(A+)K−K1 − Aν′(A−)K+1(A+)K1f †

ρ′µ′(A+)K−K1)δρ′ν

)

.

(2.55)

Note that if we consider the noncommutative flat space, there are additional terms which

come from the variation of external momenta eikA. We can show that such terms do not

contribute to the correlator in this regularization.

The first line of the trace part is calculated as

1

K

∑

K1

∑

a,b

(YK)2

〈 tr(Aρ′(A−)K+1(A+)K1f †
ρ′ν′(A+)K−K1 − Aρ′(A+)K1f †

ρ′ν′(A+)K−K1(A−)K+1)δνµ′ 〉

= − 1

K2

∑

K1,K2

∑

a,b

BK1,K−K1
BK2,K−K2

trY1YaY1′Yb
1

P 2
((d − 2)Pν′K · P + P 2Kν′)δνµ′ trY†

bY
†
2′Y†

aY†
2 . (2.56)

In this way, the bosonic part is obtained as

(YK)2

〈

−(A−)K+1
ij

(

δ

δAν

)

ji

Str(A+)K [Aρ′ , Aµ′

][Aρ′ , Aν′

]

〉

∼ 1

K2

∑

K1,K2

∑

a,b

BK1,K−K1
BK2,K−K2

trY1YaY1′Yb

1

P 2

(

((d − 2)K · PPν′ + P 2Kν′)δνµ′ + ((d − 2)K · PPµ′ + P 2Kµ′)δνν′
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− K · P (δµ′νPν′ − Pνδµ′ν′) + Pµ′(Pν′Kν − PνKν′)

− K · P (δν′νPµ′ − Pνδν′µ′) + Pν′(Pµ′Kν − PνKµ′)
)

trY†
bY

†
2′Y†

aY†
2 . (2.57)

The fermionic part is calculated as

(YK)2

〈

−(A−)K+1
ij

(

δ

δAν

)

ji

Str(A+)K
1

2
ψ̄Γ(ν′

[Aµ′), ψ]

〉

→ 1

K2

∑

K1,K2

∑

a,b

BK1,K−K1
BK2,K−K2

trY1YaY1′Yb

f

4P 2
(P · KPν′δνµ′ + P · KPµ′δνν′) trY†

bY
†
2′Y†

aY†
2 . (2.58)

The contribution corresponding to fermionic equation of motion is

(YK)2
∑

K1

〈

tr
1

4
(A−)K1ψ̄Γ−ν(A−)K−K1

∂

∂ψ̄
Str Vµ′ν′

〉

→ 1

K2

∑

K1,K2

∑

a,b

BK1,K−K1
BK2,K−K2

trY1YaY1′Yb

f

8P 2

(

(Pν(Pµ′Kν′ + Pν′Kµ′) − P · KPν′δνµ′ − P · KPµ′δνν′

)

trY†
bY

†
2′Y†

aY†
2 . (2.59)

The leading contribution of the one point function of Wilson line operators is given by

1

K2

∑

K1,K2

∑

a,b

BK1,K−K1
BK2,K−K2

trY1YaY1′Yb

1

P 2

((

d − 3 − f

4
− f

8

)

(

Pν′δνµ′ + Pµ′δνν′

)

K · P + 2Pνδµ′ν′K · P

+(Kν′δνµ′ + Kµ′δνν′)P 2 + 2KνPµ′Pν′ +

(

f

8
− 1

)

Pν

(

Pµ′Kν′ + Pν′Kµ′

)

)

trY†
bY

†
2′Y†

aY†
2 .

(2.60)

By multiplying Kµ to Aµνµ′ν′

tot , we obtain

KµAµνµ′ν′

tot =
1

K2

∑

K1,K2

∑

a,b

BK1,K−K1
BK2,K−K2

trY1YaY1′Yb

1

P 2

(

(2d − 4 − f)
K · PPµ′

P νP ν′

P 2
+ 2Pνδµ′ν′K · P + 2KνPµ′Pν′

+ (
f

8
− 1)((Pν′δνµ′ + Pµ′δνν′)K · P + Pν(Pµ′Kν′ + Pν′Kµ′))

+ P 2(Kν′δνµ′ + Kµ′δνν′)
)

trY†
bY

†
2′Y†

aY†
2 . (2.61)

When f = 2d − 4, (2.61) and (2.60) agree with each other.
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Figure 1: ’t Hooft’s double line notation. We sum over the internal momenta which constitute a

complete set of states.

3. Universality of the result

3.1 Universal amplitude

As we have seen in the previous section, the Wilson line correlator is given by the separating

function Bj1,j−j1. In this section, we will show that this result is universal since it only

assumes the completeness condition of the generators of SU(N).

The correlators contain the following amplitude

ÁÀ
Â¿

ÁÀ
Â¿

Y ′
1

YaY1

Yb

= trY1YaY1′Yb trY†
bY

†
2′Y†

aY†
2 . (3.1)

We recall the completeness condition:

∑

a

(Ya)ij(Y†
a)kl = δilδjk . (3.2)

By using this relation, we obtain

∑

ab

trY1YaY1′Yb trY†
bY

†
2′Y†

aY†
2

= trY1Y†
2 trY1′Y†

2′ . (3.3)

While Y depends on a particular G/H we pick, the following relation is universal

trY1Y†
2 = δj1−j2 + O(1/N) , (3.4)

where j1 is a momentum carried by Y1. trY1′Y†
2′ provides the same δ due to the momen-

tum conservation law. The universality of the amplitude reflects on the universality with

respect to the topology of the D-brane worldvolume, which is closely related to the cut off

independence of the analysis.

Finally, we provide a pictorial representation of our evaluation of the universal am-

plitude in figure 1. Our result is naturally understood by using the ’t Hooft’s double line

notation.
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3.2 Example : CP 2

In contrast to the preceding sub-section, the separating function B depends on a choice of

G/H. In this sub-section, we will show that the momentum (k) dependence of WLC on

CP 2 = SU(3)/U(2) is also as 1/k2. We will calculate B in the semiclassical approximation.

We define the raising and lowering operators as

p± =
1√
2
(p4 ± ip5) , p̃± =

1√
2
(p6 ± ip7) , (3.5)

The normalization condition of spherical harmonics is

trY†
jYj = 1 , (3.6)

where

Yj = yj(p+)j . (3.7)

In the semiclassical approximation,

p+ = r
ξ1

1 + ξ̄ξ
, p− = r

ξ2

1 + ξ̄ξ
, (3.8)

we may estimate

trY†
jYj = r2j+2

∫

2d4ξ

π2(1 + ξξ̄)3
(ξ̄ξ)j

(1 + ξ̄ξ)2j
y2

j

= r2j+2 2(j!)2

(2j + 2)!
y2

j . (3.9)

Thus, we obtain

B̃2
j1,j−j1 =

y2
j

y2
j−j1

y2
j1

∼
√

π

2

(

j

(j − j1)j1

)3

2

N . (3.10)

The Wilson line correlators (2.30) are calculated as

〈 StrYjf1f2 Str f †
2f †

1Y
†
j 〉

=
1

j2

j
∑

j1=0

j
∑

j2=0

〈 trYj1f1Yj−j1f2 tr f †
2Y

†
j2

f †
1Y

†
j−j2

〉Bj1j−j1Bj2j−j2

∼ N

j2

√
πζ

(

3

2

)

. (3.11)

We have obtained the 1/(momentum)2 behavior without a log factor. The correlators are

also invariant under the rotation of 8 dimensional space in which CP 2 sits.
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3.3 Universality with respect to the dimensionality

We have shown in this section that the correlator is given by the separating function B.

This result holds for any G/H , irrespective of its dimension. Therefore, we consider higher

dimensional NC gauge theory here. NC gauge theory on S2 ×S2×S2 is considered in [14].

The WLC is obtained as

〈

Str(pa+)j(pb+)j(pc+)jf1f2 Str f †
2f †

1(pa−)j(pb−)j(pc−)j
〉

=
n2

j2

j
∑

j1=0

(

yj

yj1yj−j1

)6

=
n2

j2

j
∑

j1=0

B6
j1,j−j1

∼ n2

j2

j
∑

j1=1

(

l2πj

j1(j − j1)

)
3

2

=
Nnπ3/2

4j2
ζ(

3

2
) . (3.12)

Thus, the graviton is localized on 6 dimensional subspace: S2×S2×S2. We may naturally

interpret that graviton is localized on D5-brane.

When we consider (S2×)x type spacetime, correlators are calculated as

n2

j2

∑

B2x ∼ N
n

j2
. (3.13)

except S2(x = 1). Thus, the correlators exhibit the inverse squared momentum law on any

G/H whose dimension is larger than 2.

4. Conclusions and discussions

In this paper, we have investigated the two point correlation functions of graviton vertex

operators in 4 dimensional NC gauge theory with maximal SUSY on compact homogeneous

spacetime G/H. The infrared contributions (k4log(k)) to the correlators are identical to

those in conformal field theory just like the correlators of the energy-momentum tensor.

However the ultra-violet contributions are very different even in the small external mo-

mentum case. This is due to the UV/IR mixing effects caused by the NC phases in the

correlators. In the case of the symmetric ordered graviton operators, we find that the two

point correlators behave as 1/k2. This fact indicates the existence of massless gravitons in

NC gauge theory. It has been clear that there is a bulk gravity in 4d NC gauge theory with

maximal SUSY since the one loop effective action involving the quadratic Wilson lines is

consistent with 10 dimensional supergravity. In order to obtain realistic quantum gravity,

we need to obtain 4 dimensional gravity. Such a possibility may be realized in various ways

if a graviton is bound to the brane or through induced gravity on the brane. We hope
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our findings will make a first concrete step to identify such a mechanism in 4d NC gauge

theory.

We still need to investigate various issues to establish such a mechanism. One issue

is to understand the correlators of n point functions. Another issue is to understand the

correlators of more generic Wilson lines. If we consider the vertex operators which contain

more commutators of [Aµ, Aν ], analogous calculations show that the two point functions

are more singular in the infra-red limit than 1/k2. It might imply that the relevant modes

are (gravitationally) confined and develop a mass gap in that channel. On the other hand,

the correlators of the Wilson lines which contain fewer [Aµ, Aν ] do not exhibit singularity in

the infra-red limit. The third issue is that the two point correlators are not transverse due

to the one point functions as we have seen in the Ward identity. They seem to correspond

to graviton propagators in a certain gauge.

Our investigation is also restricted to the leading order of the ’t Hooft coupling in NC

gauge theory which is valid in the weak coupling regime. We need to understand higher

order quantum corrections also. Since the behavior of the correlators is governed by the

power counting, it is likely that higher order corrections do not modify our results. It is

also desirable to have a consistent supergravity description in the strong coupling limit.

If the graviton vertex operators are coupled to conserved energy-momentum tensor,

we can reproduce the Newton’s law between them by taking the expectation values of the

graviton vertex operators. It might be a good strategy to pursue this idea further since

such a structure is consistent with the one loop effective action of NC gauge theory.
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A. Bosonic part of the tensor structure of graviton correlators on S2 × S2

In this appendix, we investigate the bosonic part of the tensor structure of graviton cor-

relators on S2 × S2. We obtain the anisotropic tensor structure. For the supersymmetric

correlators, we obtain the isotropic tensor structure in section 2.3. By considering the

isometry of the space, we can replace

PµPνP ′
µP ′

ν → P 4
A

15
(δµν

A δµ′ν′

A + δµµ′

A δνν′

A + δµν′

A δµ′ν
A )

+
P 2

AP 2
B

9
(δµν

A δµ′ν′

B + δµµ′

A δνν′

B + δµν′

A δµ′ν
B )

+
P 2

AP 2
B

9
(δµν

B δµ′ν′

A + δµµ′

B δνν′

A + δµν′

B δµ′ν
A )

+
P 4

B

15
(δµν

B δµ′ν′

B + δµµ′

B δνν′

B + δµν′

B δµ′ν
B ) , (A.1)
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where δA and δB are Kronecker delta effective to the 3 dimensions,

δµν
A =



















1

1

1

0

0

0



















, δµν
B =



















0

0

0

1

1

1



















P 2
A = P 2

4 + P 2
5 + P 2

6 , P 2
B = P 2

7 + P 2
8 + P 2

9 . (A.2)

By using (A.1), the bosonic part of the correlator (2.42) is replaced as
(

16

15
P 4

A +
2

3
P 4

)

(δµν
A δµ′ν′

A + δµµ′

A δνν′

A + δµν′

A δµ′ν
A )

+

(

16

9
P 2

AP 2
B +

2

3
P 4

)

(δµν
A δµ′ν′

B + δµµ′

A δνν′

B + δµν′

A δµ′ν
B )

+

(

16

9
P 2

AP 2
B +

2

3
P

)

(δµν
A δµ′ν′

B + δµµ′

A δνν′

B + δµν′

A δµ′ν
B )

+

(

16

15
P 4

B +
2

3
P 4

)

(δµν
B δµ′ν′

B + δµµ′

B δνν′

B + δµν′

B δµ′ν
B ) . (A.3)

We need to estimate the P 4
A and P 2

AP 2
B . We calculate them under the semiclassical approx-

imation. Angular momenta are represented by the adjoint representation on S2, then, the

integral of P 4
A is semiclassically written as

∫

dX1dX̃1
(X1 − X2)

4

(X1 − X2)2 + (X̃1 − X̃2
2
)

(A.4)

where

PA = X1 − X2 . (A.5)

X2 and X̃2 are fixed at some point on S2. (A.4) is calculated as
∫

dΩdΩ̃
(X1 − X2)

4

(X1 − X2)2 + (X̃1 − X̃2
2
)

=

∫ π

0
d cos θd cos θ̃

(2 − 2 cos2 θ)2

(4 − 2 cos2 θ − 2 cos2 θ̃)2

=

∫ 1

−1
dXdX̃

(1 − X2)2

(2 − X2 − X̃2)2
, (A.6)

where we transform the valuables as

X = cos θ, X̃ = cos θ̃ . (A.7)

The integral of P 2
AP 2

B is also estimated as

∫ 1

−1
dXdX̃

(1 − X2)(2 − X̃2)

(2 − X2 − X̃2)2
. (A.8)
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By carrying out the integration of X̃ in (A.8), we obtain

4

∫ 1

0
dX(−1 + X2)

(

− −1 + X2

2(−2 + X2)(−1 + X2)
+

(−3 + X2) tan−1 1√
−2+X2

2(−2 + X2)3/2

)

. (A.9)

The first term is calculated as

−2 +
√

2 log(1 +
√

2) . (A.10)

The second term is calculated as

−4

∫

√
2

1
dx

(x2 + 1)(x2 − 1)

2x2
√

2 − x2
tanh−1 1

x
, (A.11)

where we transform the valuables as

X2 − 2 = −x2 . (A.12)

Formally, tanh(1/x) is expanded as

tanh−1 1

x
=

∞
∑

k=1

1

2k − 1

(

1

x

)2k−1

. (A.13)

By using this expression, we carry out the integral in (A.11) as

∞
∑

k=1

−4

2k − 1

(

− 2−5/2−k

k(k − 2)
(
(k − 2)

√
πΓ(1 − k)

Γ(1/2 − k)
− 4k

√
πΓ(3 − k)

Γ(5/2 − k)
)

+
−(k − 2)2F1((1/2, 1), (1 − k),−1) + k2F1((1/2, 1), (3 − k),−1)

4k(k − 2)

)

, (A.14)

where 2F1(a; b; z) is a generalized hypergeometric function. We numerically obtain (A.8)

as

∫ 1

0
dXdX̃

(1 − X2)(2 − X̃2)

(2 − X2 − X̃2)2
∼ −0.188 + 0.396

= 0.208 . (A.15)

We also evaluate (A.6) as

∫ 1

0
dXdX̃

(1 − X2)2

(2 − X2 − X̃2)2
∼ 0.292 . (A.16)

After all, the Bosonic part of the tensor structure of the graviton on S2 × S2 (A.3) is

evaluated among the estimations (A.15) and (A.16) as

0.98(δµν
A δµ′ν′

A + δµµ′

A δνν′

A + δµν′

A δµ′ν
A + δµν

B δµ′ν′

B + δµµ′

B δνν′

B + δµν′

B δµ′ν
B )

+1.04(δµν
A δµ′ν′

B + δµµ′

A δνν′

B + δµν′

A δµ′ν
B + δµν

A δµ′ν′

B + δµµ′

A δνν′

B + δµν′

A δµ′ν
B ) . (A.17)
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